| 级别: 高级 David Mertz, Ph. D. (mertz@gnosis.cx), 开发人员, Gnosis Software, Inc.
2007 年 1 月 23 日 Python 使元编程成为可能,不过每个版本的 Python 都有一些细微的区别(并且不是完全兼容),这使我们实现元编程的道路变得更加崎岖。一类函数对象的使用由来已久,同样还有一些技术用于探索和实现魔术般的 属性。在版本 2.2 中,Python 增加了一种很有帮助的定制元类机制,但是其代价就是令用户绞尽脑汁。最近,在 2.4 版本中,Python 增加了 “decorator” ,这是适于执行大部分元编程的最新方式 —— 也是到目前为止对用户最友好的方式。 少劳多得 Decorator 与 Python 之前引入的元编程抽象有着某些共同之处:即使没有这些技术,您也一样可以实现它们所提供的功能。正如 Michele Simionato 和我在 可爱的 Python 专栏的早期文章 中指出的那样,即使在 Python 1.5 中,也可以实现 Python 类的创建,而不需要使用 “元类” 挂钩。 Decorator 根本上的平庸与之非常类似。Decorator 所实现的功能就是修改紧接 Decorator 之后定义的函数和方法。这总是可能的,但这种功能主要是由 Python 2.2 中引入的 classmethod() 和 staticmethod() 内置函数驱动的。在旧式风格中,您可以调用 classmethod() ,如下所示:
清单 1. 典型的 “旧式” classmethod
class C: def foo(cls, y): print "classmethod", cls, y foo = classmethod(foo)
|
虽然 classmethod() 是内置函数,但并无独特之处;您也可以使用自己的方法转换函数。例如:
清单 2. 典型的 “旧式” 方法的转换
def enhanced(meth): def new(self, y): print "I am enhanced" return meth(self, y) return new class C: def bar(self, x): print "some method says:", x bar = enhanced(bar)
|
decorator 所做的一切就是使您避免重复使用方法名,并且将 decorator 放在方法定义中第一处提及其名称的地方。例如:
清单 3. 典型的 “旧式” classmethod
class C: @classmethod def foo(cls, y): print "classmethod", cls, y @enhanced def bar(self, x): print "some method says:", x
|
decorator 也可以用于正则函数,采用的是与类中的方法相同的方式。令人惊奇的是,这一切是如此简单(严格来说,甚至有些不必要),只需要对语法进行简单修改,所有东 西就可以工作得更好,并且使得程序的论证更加轻松。通过在方法定义的函数之前列出多个 decorator,即可将 decorator 链接在一起;良好的判断可以有助于防止将过多 decorator 链接在一起,不过有时候将几个 decorator 链接在一起是有意义的:
清单 4. 链接 decorator
@synchronized @logging def myfunc(arg1, arg2, ...): # ...do something # decorators are equivalent to ending with: # myfunc = synchronized(logging(myfunc)) # Nested in that declaration order
|
Decorator 只是一个语法糖,如果您过于急切,那么它就会使您搬起石头砸了自己的脚。decorator 其实就是一个至少具有一个参数的函数 —— 程序员要负责确保 decorator 的返回内容仍然是一个有意义的函数或方法,并且实现了原函数为使连接有用而做的事情。例如,下面就是 decorator 两个不正确的用法:
清单 5. 没有返回函数的错误 decorator
>>> def spamdef(fn): ... print "spam, spam, spam" ... >>> @spamdef ... def useful(a, b): ... print a**2 + b**2 ... spam, spam, spam >>> useful(3, 4) Traceback (most recent call last): File "", line 1, in ? TypeError: 'NoneType' object is not callable
|
decorator 可能会返回一个函数,但这个函数与未修饰的函数之间不存在有意义的关联:
清单 6. 忽略传入函数的 decorator
>>> def spamrun(fn): ... def sayspam(*args): ... print "spam, spam, spam" ... return sayspam ... >>> @spamrun ... def useful(a, b): ... print a**2 + b**2 ... >>> useful(3,4) spam, spam, spam
|
最后,一个表现更良好的 decorator 可以在某些方面增强或修改未修饰函数的操作:
清单 7. 修改未修饰函数行为的 decorator
>>> def addspam(fn): ... def new(*args): ... print "spam, spam, spam" ... return fn(*args) ... return new ... >>> @addspam ... def useful(a, b): ... print a**2 + b**2 ... >>> useful(3,4) spam, spam, spam 25
|
您可能会质疑,useful() 到底有多么有用?addspam() 真的是那样出色的增强 吗?但这种机制至少符合您通常能在有用的 decorator 中看到的那种模式。
高级抽象简介 根据我的经验,元类应用最多的场合就是在类实例化之后对类中的方法进行修改。decorator 目前并不允许您修改类实例化本身,但是它们可以修改依附于类的方法。这并不能让您在实例化过程中动态添加或删除方法或类属性,但是它让这些方法可以在运行时根据环境的条件来变更其行为。现在从技术上来说,decorator 是在运行 class 语句时应用的,对于顶级类来说,它更接近于 “编译时” 而非 “运行时”。但是安排 decorator 的运行时决策与创建类工厂一样简单。例如:
清单 8. 健壮但却深度嵌套的 decorator
def arg_sayer(what): def what_sayer(meth): def new(self, *args, **kws): print what return meth(self, *args, **kws) return new return what_sayer
def FooMaker(word): class Foo(object): @arg_sayer(word) def say(self): pass return Foo()
foo1 = FooMaker('this') foo2 = FooMaker('that') print type(foo1),; foo1.say() # prints: this print type(foo2),; foo2.say() # prints: that
|
@arg_sayer() 绕了很多弯路,但只获得非常有限的结果,不过对于它所阐明的几方面来说,这是值得的: -
Foo.say() 方法对于不同的实例有不同的行为。在这个例子中,不同之处只是一个数据值,可以轻松地通过其他方式改变这个值;不过原则上来说,decorator 可以根据运行时的决策来彻底重写这个方法。
- 本例中未修饰的
Foo.say() 方法是一个简单的占位符,其整个行为都是由 decorator 决定的。然而,在其他情况下,decorator 可能会将未修饰的方法与一些新功能相结合。
- 正如我们已经看到的一样,
Foo.say() 的修改是通过 FooMaker() 类工厂在运行时严格确定的。可能更加典型的情况是在顶级定义类中使用 decorator,这些类只依赖于编译时可用的条件(这通常就足够了)。
- decorator 都是参数化的。或者更确切地说,
arg_sayer() 本身根本就不是一个真正的 decorator;arg_sayer() 所返回的 函数 —— what_sayer() 就是一个使用了闭包来封装其数据的 decorator 函数。参数化的 decorator 较为常见,但是它们将所需的函数嵌套为三层。
迈进元类领域 正 如上一节中介绍的一样,decorator 并不能完全取代元类挂钩,因为它们只修改了方法,而未添加或删除方法。实际上,这样说并不完全正确。作为一个 Python 函数,decorator 完全可以实现其他 Python 代码所实现的任何功能。通过修饰一个类的 .__new__() 方法(甚至是其占位符版本),您实际上可以更改附加到该类的方法。尽管尚未在现实中看到这种模式,不过我认为它有着某种必然性,甚至可以作为 _metaclass_ 指派的一项改进:
清单 9. 添加和删除方法的 decorator
def flaz(self): return 'flaz' # Silly utility method def flam(self): return 'flam' # Another silly method
def change_methods(new): "Warning: Only decorate the __new__() method with this decorator" if new.__name__ != '__new__': return new # Return an unchanged method def __new__(cls, *args, **kws): cls.flaz = flaz cls.flam = flam if hasattr(cls, 'say'): del cls.say return super(cls.__class__, cls).__new__(cls, *args, **kws) return __new__
class Foo(object): @change_methods def __new__(): pass def say(self): print "Hi me:", self
foo = Foo() print foo.flaz() # prints: flaz foo.say() # AttributeError: 'Foo' object has no attribute 'say'
|
在 change_methods() decorator 示例中,我们添加并删除了几个固定的方法,不过这是毫无意义的。在更现实的情况中,应使用上一节中提到的几个模式。例如,参数化的 decorator 可以接受一个能表示要添加或删除的方法的数据结构;或者由数据库查询之类的某些环境特性做出这一决策。这种对附加方法的操作也可以像之前一样打包到一个函 数工厂中,这将使最终决策延迟到运行时。这些新兴技术也许比 _metaclass_ 指派更加万能。例如,您可以调用一个增强了的 change_methods() ,如下所示:
清单 10. 增强的 change_methods()
class Foo(object): @change_methods(add=(foo, bar, baz), remove=(fliz, flam)) def __new__(): pass
|
修改调用模型 您将看到,有关 decorator 的最典型的例子可能是使一个函数或方法来实现 “其他功能”,同时完成其基本工作。例如,在诸如 Python Cookbook Web 站点(请参见 参考资料 中的链接)之类的地方,您可以看到 decorator 添加了诸如跟踪、日志记录、存储/缓存、线程锁定以及输出重定向之类的功能。与这些修改相关(但实质略有区别)的是修饰 “之前” 和 “之后”。对于修饰之前/之后来说,一种有趣的可能性就是检查传递给函数的参数和函数返回值的类型。如果这些类型并非如我们预期的一样,那么这种 type_check() decorator 就可能会触发一个异常,或者采取一些纠正操作。 与这种 decorator 前/后类似的情况,我想到了 R 编程语言和 NumPy 特有的函数的 “elementwise” 应用。在这些语言中,数学函数通常应用于元素序列中的每个元素,但也会应用于单个数字。 当然,map() 函数、列表内涵(list-comprehension)和最近的生成器内涵(generator-comprehension 都可以让您实现 elementwise 应用。但是这需要较小的工作区来获得类似于 R 语言的行为:map() 所返回的序列类型通常是一个列表;如果您传递的是单个元素而不是一个序列,那么调用将失败。例如:
清单 11. map() 调用失败
>>> from math import sqrt >>> map(sqrt, (4, 16, 25)) [2.0, 4.0, 5.0] >>> map(sqrt, 144) TypeError: argument 2 to map() must support iteration
|
创建一个可以 “增强” 普通数值函数的 decorator 并不困难:
清单 12. 将函数转换成 elementwise 函数
def elementwise(fn): def newfn(arg): if hasattr(arg,'__getitem__'): # is a Sequence return type(arg)(map(fn, arg)) else: return fn(arg) return newfn
@elementwise def compute(x): return x**3 - 1
print compute(5) # prints: 124 print compute([1,2,3]) # prints: [0, 7, 26] print compute((1,2,3)) # prints: (0, 7, 26)
|
当然,简单地编写一个具有不同返回类型的 compute() 函数并不困难;毕竟 decorator 只需占据几行。但是作为对面向方面编程的一种认可,这个例子让我们可以分离 那些在不同层次上运作的关注事项。我们可以编写各种数值计算函数,希望它们都可转换成 elementwise 调用模型,而不用考虑参数类型测试和返回值类型强制转换的细节。 对于那些对单个事物或事物序列(此时要保留序列类型)进行操作的函数来说,elementwise() decorator 均可同样出色地发挥作用。作为一个练习,您可尝试去解决如何允许相同的修饰后调用来接受和返回迭代器(提示:如果您只是想迭代一次完整的 elementwise 计算,那么当且仅当传入的是一个迭代对象时,才能这样简化一些。) 您 将碰到的大多数优秀的 decorator 都在很大程度上采用了这种组合正交关注的范例。传统的面向对象编程,尤其是在诸如 Python 之类允许多重继承的语言中,都会试图使用一个继承层次结构来模块化关注事项。然而,这仅会从一个祖先那里获取一些方法,而从其他祖先那里获取其他方法,因 此需要采用一种概念,使关注事项比在面向方面的思想中更加分散。要充分利用生成器,就要考虑一些与混搭方法不同的问题:可以处于方法本身的 “核心” 之外的关注事项为依据,使各 方法以不同方式工作。
修饰 decorator 在结束本文之前,我想为您介绍一种确实非常出色的 Python 模块,名为 decorator ,它是由与我合著过一些图书的 Michele Simionato 编写的。该模块使 decorator 的开发变得更加美妙。decorator 模块的主要组件具有某种自反式的优雅,它是一个称为 decorator() 的 decorator。与未修饰的函数相比,使用 @decorator 修饰过的函数可以通过一种更简单的方式编写。(相关资料请参看 参考资料)。 Michele 已经为自己的模块编写了很好的文档,因此这里不再赘述;不过我非常乐意介绍一下它所解决的基本问题。decorator 模块有两大主要优势。一方面,它使您可以编写出嵌套层次更少的 decorator,如果没有这个模块,您就只能使用更多层次(“平面优于嵌套”);但更加有趣的是这样一个事实:它使得修饰过的函数可以真正地与其在元 数据中未修饰的版本相匹配,这是我的例子中没有做到的。例如,回想一下我们上面使用过的简单 “跟踪” decorator addspam() :
清单 13. 一个简单的 decorator 是如何造成元数据崩溃的
>>> def useful(a, b): return a**2 + b**2 >>> useful.__name__ 'useful' >>> from inspect import getargspec >>> getargspec(useful) (['a', 'b'], None, None, None) >>> @addspam ... def useful(a, b): return a**2 + b**2 >>> useful.__name__ 'new' >>> getargspec(useful) ([], 'args', None, None)
|
尽管这个修饰过的函数的确完成 了自己增强过的工作,但若进一步了解,就会发现这并不是完全正确的,尤其是对于那些关心这种细节的代码分析工具或 IDE 来说更是如此。使用 decorator ,我们就可以改进这些问题:
清单 14. decorator 更聪明的用法
>>> from decorator import decorator >>> @decorator ... def addspam(f, *args, **kws): ... print "spam, spam, spam" ... return f(*args, **kws) >>> @addspam ... def useful(a, b): return a**2 + b**2 >>> useful.__name__ 'useful' >>> getargspec(useful) (['a', 'b'], None, None, None)
|
这对于编写 decorator 更加有利,同时,其保留行为的元数据的也更出色了。当然,阅读 Michele 开发这个模块所使用的全部资料会使您回到大脑混沌的世界,我们将这留给 Simionato 博士一样的宇宙学家好了。
参考资料 学习
|
没有评论:
发表评论